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Abstract. Early stopping and weight decay are studied in a linear perceptron using a new
simplified approach to the dynamics in the thermodynamical limit. The approach is directly
deduced from the gradient descent weight update. It allows an exact description of the dynamics
of the batch training process. The results are compared with a recent study of early stopping
and weight decay based on the equilibrium statistical mechanics approach. It is shown that
the equilibrium results for early stopping are good approximations and are exact for weight
decay. Furthermore, in the dynamical approach it is possible to determine the necessary number
of training steps to fulfil certain termination conditions. It can be shown that asymptotically,
i.e. if the number of examples is large, only two batch steps are required to reach the optimal
convergence, if the learning rate is optimally chosen.

1. Introduction

The ability of neural networks to learn tasks from examples makes them interesting for
many applications for which direct algorithmic approaches are unknown. Insupervised
training, a set of examples, i.e. pairs of inputs and correct outputs, is used to minimize
the empirical loss. The empirical loss is a certain cost function averaged over the set of
examples. The performance for the whole learning task is measured by the expected loss,
an average over all possible inputs. If the number of examples is large it can be expected
that the minimization of the empirical loss also leads to a minimal expected loss.

However, for rather small numbers of examples empirical loss and expected loss can
be quite different quantities. Then the training process which minimizes the empirical
loss, will not simultaneously lead to a minimum of the expected loss. This phenomenon
is calledoverfitting or overtraining. It is useful to distinguish clearly between overfitting
and overtraining. Overfitting describes the case where a network has too many degrees
of freedom and therefore fits the examples in a more complicated fashion than necessary.
Overtraining on the other hand, even appears in optimally chosen network architectures if
the task is nonlinear [1]. As long as the number of examples is small an overtrained network
might learn the examples best, although it shows only poor generalization abilities.

To avoid overfitting, model selection strategies should be applied in order to choose the
most adequate network architecture. Several approaches for model selection can be found in
literature, such as the Akaike criterion [2], optimal brain damage [3], a Bayesian approach
[4], the network information criterion (NIC) [5] and others.
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The most commonly used methods to avoid overtraining areearly stoppingandweight
decay. Early stopping simply terminates the training process at an earlier state. If the values
of the two loss functions observed during the training process, overtraining implies that after
an initial decrease of both loss functions, the expected loss begins to increase again while
the empirical loss continues to decrease. Therefore, it would be advantageous to terminate
training before the expected loss starts to rise again. However, in practice, the value of the
expected loss is unknown, and one has to deal with approximations for it, which can be
summarized asvalidation methods[6–8]. Here we do not want to deal with the additional
errors which originate from validation methods, but rather concentrate on the abilities of
early stopping alone. This is the reason why we examine what is optimally possible with
early stopping, if it is guided by the actual expected loss. Some results on the effect of
validation with a finite validation set, which are related to our model, can be found in [7, 9].

Weight decay introduces an additional penalty term which reduces the size of the weights
in each training step. The problem of weight decay is to determine the relative strength of
this penalty term [10]. Sometimes weight decay can be strong enough that a certain weight
vector is effectively eliminated, thus weight decay also changes the network architecture
(calledpruning), and avoids overfitting.

Here we will introduce a model which allows a full analytical description of the training
process. In this setting the effect of early stopping and also weight decay can be studied in
detail.

2. The model

To make the method tractable we have to restrict ourselves to quite a simple neural network
model. Nevertheless, previous works have demonstrated that this set-up displays some
typical behaviour of neural nets [11, 12]. The model is a single-layer perceptron [13],
which has one layer of adjustable weightsWi between theN -dimensional input layerxi
and the one-dimensional outputz. The learning task can be formulated also for nonlinear
outputs, however, an analytical treatment is only possible if the outputsz of the trained
network arelinear. Together, we have

h(x) := 1√
N

N∑
i=1

Wixi and z = g(h) = h. (1)

We are interested in supervised training, where examplesxiµ (µ = 1, . . . , P ) are given for
which the correct outputz∗µ is known. To define the task more clearly and to monitor the
training process, we assume that the examples are given by another network, theteacher
network. Variables referring to the teacher are always indicated by a star ‘*’. The teacher
is not restricted to linear outputs, it can have a different output functionz∗ = g∗(h∗). Usual
choices forg∗(h∗) are tanh(h∗) or h∗ + ε, where a Gaussian noiseε with zero mean and
varianceσ is added.

Training is based on empirical loss minimization. The most common cost function is
the mean squared error (MSE), i.e. loss[x, z∗, z] := 1

2[z∗(x) − z(x)]2. Note that onlyx
and z∗ are independent arguments of loss. By introducing the teacher,z∗ is given byx
andW ∗. The student weight vectorW is determined by the training process and therefore
dependent onx andW ∗, as

loss[x,W ∗;W ] = 1

2

[
g∗
(

1√
N

N∑
i=1

W ∗i xi

)
− 1√

N

N∑
i=1

Wixi

]2

. (2)
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During training, the average error over the examples, i.e. thetraining error or
empirical lossET := 〈loss[xµ,W ∗,W ]〉{xµ,µ=1,...,P }, is minimized. However, what we
are interested in, is a minimal error averaged over all possible inputsx, i.e. EG :=
〈loss[x,W ∗,W ]〉{x∈Input}, calledgeneralization erroror expected loss.

The effect of the training can be described by the order parameters, i.e.

R := 1

N

N∑
i=1

W ∗i Wi and Q := 1

N

N∑
i=1

(Wi)
2 . (3)

It can be shown [11] that for a fixed student and teacher and random inputsx, i.e. all
componentsxi are independent with zero means and unit variances, the local fieldsh∗ and
h fulfil,

〈(h∗)2〉x = 1 〈h∗h〉x = R̂ 〈(h)2〉x = Q̂ (4)

whereR̂ andQ̂ are averaged values of the order parameters. They can be used to describe
the typical behaviour of a large neural network.

The average over the inputsx can then be transformed into an average over the local
fields h∗ andh. It is more convenient to use the uncorrelated local fieldsh̃∗ and h̃, such

that loss(h̃∗, h̃) becomes1
2[g∗(h̃∗) − (R̂h̃∗ +

√
Q̂− R̂2h̃)]2. Then the generalization error

is defined as

EG = 〈loss(h̃∗, h̃)〉h̃∗,h̃ 〈· · ·〉h̃ =
∫ ∞
−∞

dh̃√
2π

exp

(
− h̃

2

2

)
. . . . (5)

In the case of the linear student, it simplifies to

EG(R̂, Q̂) = 1
2[G− 2HR̂ + Q̂] (6)

with the two parameters,

G(γ ) := 〈[g∗(γ h̃∗)]2〉h̃∗ and H(γ ) := 〈g∗(γ h̃∗)h̃∗〉h̃∗ (7)

which summarize the dependence on the teacher. Here, we normalize the teacher weights,
‖W ∗‖ = 1. The effect of a different norm is taken into account by a variable gainγ 6= 1 of
the teacher transfer function. In the case,g∗(h∗) = γ h∗+ε, the parameters areG = γ 2+σ 2

andH = γ .
The task can be learnt exactly, which means that the final generalization error is zero,

only if the teacher and the student are identical. Such tasks are calledrealizableas opposed
to unrealizable tasks, which cannot be learnt exactly due to an inappropriately chosen
student network. The solution of the realizable task, linear student learns linear teacher,
is quite obvious and exactly solved afterP = N examples are given. The results, which
will be presented in the following, can be applied to this case if we setG = H 2 = γ 2.
The unrealizable task is much more interesting, since an infinite number of examples are
necessary to reach the minimal generalization error.

To plot lines in the figures we have to specify the values ofG andH . For compatibility
reasons to other works [11, 14], we chooseG = 0.84 andH = 0.78, which corresponds to
g∗(h∗) = tanh(5h∗). This is no restriction of any kind.

In the next section we introduce a new method to calculate the behaviour of the order
parameters during the training process. Readers, who do not wish to go into technical details
in first reading, can turn directly to the discussion of the results in section 5. Later they
can read how the relevant expressions are calculated. In section 4 we recapitulate briefly
the equilibrium statistical mechanics approach, the detailed discussion can be found in [14].
In section 5 we illustrate the results and compare the two approaches. Finally, the paper is
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concluded with a summary and a perspective on further problems. Parts of this work were
presented in [15].

3. Dynamical approach

In the usual equilibrium statistical mechanics approach, the typical behaviour is calculated
from a thermodynamic quantity, the free energy. The free energy is derived from the
averaged sum of states, which minimize the training energy and fulfil a normalization
condition, see (23). The average is computed over the distribution of the inputs{xiµ}, see
[16] for details.

Another approach to study learning and generalization in a linear single-layer perceptron
was proposed by Krogh and Hertz [17, 18, 10]. It solves a Langevin dynamics using Green
functions. With this approach it should be possible to study the full dynamical behaviour
of the network.

We think, however, that our approach is more transparent, because it is directly deduced
from the gradient descent update rule. In the linear model the explicit calculation of the
resulting microscopic weights is possible at every timestep, see step 1. This expression
can be inserted in the definitions of the order parameters (3). The order parameters must
then be averaged over the distribution of the inputs. Since the dependence of the inputs
is complicated, we use a trick. We can additionally average over the distribution of the
teachersW ∗, which does by symmetry not effect our result. The average over the teacher
weightsW ∗ is computed in step 2. The average over the inputsxµ can then be solved in
step 3.

Preliminary versions of this method were already applied to static problems in [19, 20].
It should be mentioned that the full analytic treatment is restricted to the linear student for
all three approaches. We will discuss this issue in the final section.

Step 1.The linear student allows the calculation of the explicit values of the weights at every
timestep. We start with the gradient descent learning rule for the linear studentg′(h) = 1,

Wi(t + 1) = Wi(t)− η∂(PET )
∂Wi

= Wi(t)+ η√
N

P∑
µ=1

[z∗µ − zµ(t)]xiµ (8)

wheret is a batch training step andη denotes thelearning rate.
We need to discriminate between the underdetermined case, where we have less

examples than parameters, i.e.P < N , and the overdetermined case. In the underdetermined
case, the students weight vector can be expanded in the space of the examples, if the initial
conditions areWi(0) = 0, i.e.

Wi(t) =:
1√
N

P∑
µ=1

σµ(t)xiµ. (9)

Then a recursion for the coefficientsσµ(t) can be found,

σµ(t + 1) = σµ(t)− η
P∑
ν=1

Cµνσν(t)+ ηz∗µ (10)

with the overlap matrixCµν := 1
N

∑N
i=1 xiµxiν . From the geometrical series, we know the

solution for this recursion and therefore for the weights,

Wi(t) = η√
N

P∑
µ,ν=1

z∗µ

[
1I− (1I− ηC)t

1I− (1I− ηC)

]
µν

xiν (11)
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where 1I denotes the identity matrix. Note that since the matrices commute, their order can
be arbitrary. The initial conditions areWi(0) = 0 andWi(1) = ηN− 1

2
∑P

µ=1 z
∗
µxiµ, which

resembles the Hebbian learning rule. After infinitely many timesteps thepseudo-inverse
weights are found, i.e.

Wi(t →∞) = 1√
N

P∑
µ,ν=1

z∗µ(C
−1)µνxiν (12)

which are valid as long as the examples are linearly independent, i.e.P < N . The other
case,P > N , will be explained later.

Step 2.From (11), we can calculate the order parameters (3) at every timestep, i.e.R(t) and
Q(t). Since the order parameters depend in a complicated way on the inputs, we apply the
following trick to simplify the calculations. For a spherical input distribution, the average
over the inputs will by symmetry not depend on the teacher vectorW ∗. Hence we can
average, without changing the final result, also over an arbitrary distribution of the teacher
vector. For convenience we use again a spherical Gaussian distribution.

Computing the average over the teacher distribution first, we receive

R̂(t) =
〈

1

N

P∑
µ,ν=1

[
1I− (1I− ηC)t

C

]
µν

〈z∗µh∗ν〉{W ∗i }
〉
{xiµ}

=
〈
αH

P

P∑
µ=1

[1I − (1I− ηC)t ]µµ

〉
{xiµ}

(13)

where we have usedP = αN , and the average〈z∗µh∗ν〉{W ∗i } = CµνH from appendix A (A3).
Similarly, we can determine the other order parameter,

Q̂(t) =
〈

1

N

P∑
µ,ν,τ,σ=1

[
1I− (1I− ηC)t

C

]
µν

[
1I− (1I− ηC)t

C

]
τσ

(
1

N

N∑
i=1

xνi x
σ
i

)
〈z∗µz∗τ 〉{W ∗i }

〉
{xiµ}

=
〈
− α(G−H

2)

P

P∑
µ=1

[C−1(1I− (1I− ηC)t )2]µµ

+αH
2

P

P∑
µ=1

[(1I− (1I− ηC)t )2]µµ

〉
{xiµ}

. (14)

Again an identity (A2) from appendix A was used and some matrix algebra applied.
It is possible to calculate the behaviour of the training error in the same fashion,

ET (t) =
〈〈

1

2P

P∑
µ=1

(
z∗µ −

1√
N

N∑
i=1

Wi(t)xiµ

)2〉
{W ∗i }

〉
{xiµ}

. (15)

For the overdetermined case,P > N , a recursion analogue to (10) can be found, i.e.

Wi(t + 1) = Wi(t)− η
N∑
j=1

BijWj (t)+ η√
N

P∑
µ=1

z∗µxiµ. (16)

with Bij := 1
N

∑P
µ=1 xiµxjµ. From there, the calculation is quite similar to the one above,

with matrix B playing the role of matrixC.
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Step 3.The average over the input distribution{xiµ} can be computed by transforming the
traces, containing the random matricesC or B, into integrals over the eigenvaluesξ of C
or B. We attain integrals of the following form,〈

1

P

P∑
µ=1

[(1I− ηC)lCm]µµ

〉
{xiµ}
=
∫ ξmax

ξmin

dξρ(ξ)(1− ηξ)lξm =: I lm (17)

with l ∈ {0, t,2t} andm ∈ {−1, 0, 1}.
The integralsI lm(α, η, t) can be computed, once we know the density of the eigenvalues

ρ(ξ). The determination of this density can be found in recent literature calculated by
Opper [21] and LeCunet al [22] using replicas, by Krogh [17] using a perturbation theory
and by Sollich [23] with matrix identities. All these authors found,

ρ(ξ) = 1

2παξ

√
(ξmax− ξ)(ξ − ξmin) (18)

for α < 1. The maximal and the minimal eigenvalues areξmax,min := (1± √α)2. The
density of the eigenvaluesρ(ξ) for matrix B is (18) multiplied byα. Thus, all that remains,
is a numerical integration.

3.1. Results

The time-dependent integrals converge only, if the condition|1−ηξ | < 1 is fulfilled. From
this condition a maximal learning rateηmax can be deduced. It is twice the inverse of the
maximal eigenvalue of the correlation matrix, i.e.

ηmax= 2

ξmax
= 2

(1+√α)2 . (19)

As long as the learning rate is smaller than the maximal learning rate, the time-dependent
integralsI tm andI 2t

m vanish fort →∞.
It is a well-known fact [24], that the maximal learning rate is twice the inverse of the

maximal eigenvalue of theHessian matrix H. In the case of the linear perceptron, the
HessianH is identical to the matrixB, since

Hij := ∂2(PET )

∂Wi∂Wj
= 1

N

P∑
µ=1

xiµxjµ = Bij (20)

and both findings are therefore consistent.
The time-independent integralsI 0

m are also independent of the learning rate and depend
only on α. The dependencies are shown in table 1. TheI 0

m determine the initial values of

Table 1. The values of the time-independent integralsI0
m.

α < 1 α > 1

I0
−1

1
1−α

1
α−1

I0
0 1 1
I0

1 1 α
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the corresponding time-dependent integrals, i.e.I tm(t = 0) and I 2t
m (t = 0). Therefore, we

find the following results in the case ofα < 1,

EG(α, η, t) = G

2
+ G−H

2

2
α

(
1

1− α − 2I t−1+ I 2t
−1

)
− H

2

2
α(1− I 2t

0 )

ET (α, η, t) = G−H 2

2
I 2t

0 +
H 2

2
I 2t

1

(21)

and in the case ofα > 1,

EG(α, η, t) = G−H 2

2

(
1+ 1

α − 1
− 2I t−1+ I 2t

−1

)
+ H

2

2
I 2t

0

ET (α, η, t) = G−H 2

2

(
1− 1

α
+ I

2t
0

α

)
+ H

2

2

I 2t
1

α
.

(22)

These results will be discussed in section 5. The extension of the approach to weight decay
is discussed in appendix B.

4. Equilibrium approach

Early stopping and weight decay can also be described by extending the usual equilibrium
statistical mechanics approach [16]. The comparison with the results from the dynamical
approach gives valuable support. The statistical mechanics approach describes batch training
as an equilibrium problem. The free energyf of the system, is calculated by

− βf := 1

N
〈logZ〉{xµ:µ=1,...,P } (23)

with β being the inverse temperature andZ the sum of states.
By maximizing it with respect to the order parameters, i.e.∂f/∂R̂ = 0 and∂f/∂Q̂ = 0,

the values ofR̂ andQ̂ can be determined. Also the training errorET can be deduced from
the free energy, as1

α
∂(βf )/∂β = ET , whereβ is the inverse temperatureβ := 1

T
, for

details see [16].
Already in [11], the equilibrium has been applied to linear perceptron learning an

unrealizable task and the following expression for the errors have been found,

EG(α, a) = 1

2(a2− α) [a2G− (2a − α)αH 2]

ET (α, a) = EG(α, a)
(
a − 1

a

)2 (24)

with the parametera defined as(a−1)−1 := β(Q0−Q), whereQ0 is the maximal possible
value forQ.

Usually, it is assumed that training is continued, until the training errorET reaches its
absolute minimum. This means that the value ofa needs to be determined at temperature
T = 0. In [11], we found that the minimal value for the parametera is a0(α) := max(1, α).
If we inserta0 in (24), we receive the values shown in table 2.

In terms of the dynamics, the absolute minimum of the training error corresponds to an
infinite number of training steps, i.e.t →∞, which we callexhaustive training. Therefore,
we can reproduce the results in table 2, if we evaluate the asymptotic limit of equations
(21) and (22). If the learning rate is smaller than its maximumηmax, the time-dependent
integrals disappear when the number of training steps diverges, i.e.I tm(t → ∞) = 0 and
I 2t
m (t →∞) = 0.
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Table 2. The values of the errorsEG(α) andET (α) under exhaustive training. Exhaustive
training corresponds in the dynamical approach to infinitely many timesteps, i.e. values of (21)
and (22) with t → ∞ and a suitable learning rateη < ηmax. In the statistical mechanics
approach, exhaustive training corresponds to a minimal training error, i.e. it follows from (24)
with a = a0.

α < 1 α > 1

EG
G
2 + α

2(1−α) [G− (2− α)H 2] G−H2

2

(
1+ 1

α−1

)
ET 0 G−H2

2

(
1− 1

α

)

In table 2 the values of the two errors under exhaustive training are shown. Especially
interesting is the generalization error forα > 1, which approaches asymptotically the
residual error, i.e.E∞ := 1

2(G − H 2), with a α−1-behaviour. The behaviour of the errors
between the two extreme values is discussed in section 5.

The exhaustive training solution in table 2 shows, however, strong overtraining effects.
In the statistical mechanics approach [14], it can be shown that values fora larger thana0,
yield results with reduced overtraining or even none at all. A higher value ofa corresponds
to a finite temperatureT , implying a non-minimal training errorET > ET (a0). To terminate
training at a non-minimal training error is exactly what early stopping does. The statistical
mechanics approach is in itself not a dynamical description, it can, however, be used
to approximate early stopping. Also weight decay can be described in the equilibrium
approach.

The results of the equilibrium approach are quite attractive and in accordance with
the simulations. However, it isa priori not clear, whether the results are exact or only
approximations. That missing information follows from a comparison with the dynamical
results, which areper constructioncorrect. In [14], the comparison of the two approaches
is discussed in detail. Here, we only want to mention the results. The description of early
stopping using the equilibrium approach is not exact, but a very good approximation. The
results for weight decay of both approaches are equivalent, see figure 2.

5. Results

In this section the numerical solution of the expressions for the errors are discussed. From
the dynamical approach, we have the solutions without weight decay (21), (22) and with
weight decay (B7).

5.1. Training process

To demonstrate how well the dynamical approach describes the training process, we compare
theory with simulation. In figure 1 the results are plotted. An overdetermined case
(α = 1.05) close to the storage capacity was chosen to illustrate overtraining and the
non-zero training error.

With weight decay, the effect of overtraining can be lowered (λ = 0.05) and even totally
avoided (λ = 0.37). Theory and simulation always coincide.
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Figure 1. Training process: behaviour of the generalization errorEG (upper lines) and the
training errorET (lower lines) during training. For the loading rateα = P/N = 1.05, i.e. near
the storage capacity (αc = 1), different weight decay strengthsλ = 0.00, 0.05 and 0.37 are
tested. Theory and simulation are in very good agreement. Parameters:G = 0.84,H = 0.78;
η = 0.1; and simulations with systems of sizeN = 100 averaged over 100 iterations.

5.2. Performance

The network’s performance on the learning task, given byEG(α = P/N), as a function of
the numberP of learnt examples, is shown in figure 2.

In exhaustive training, training is continued until the absolute minimum of the training
error is reached, i.e.t → ∞. Since the task is unrealizable, exhaustive training implies
strong overtraining in the region around the storage capacity of the network, which is
αc = 1.0 in the case of the continuous perceptron.

Either early stopping or weight decay can decrease overtraining. In figure 2, only the
optimal results for both methods, early stopping and weight decay, and both approaches,
dynamical and equilibrium, are shown. Three of the four possible optimal curves coincide.
Early stopping and weight decay are equivalent in the equilibrium approach. Furthermore,
the dynamical solution for weight decay, which is exact, coincides with the statistical
mechanics curves. Only the exact solution for early stopping slightly deviates from the
other solutions.

5.3. Training time

Here, we want to know how many training steps are necessary to fulfil certain termination
conditions of the training process. The timescale will depend upon the choice of the learning
rateη. To compare the necessary training steps for different numbers of examplesP , it is
better to choose a learning rate, which is always a fraction of the maximal learning rate
ηmax(P ), see (19).

We will consider two termination conditions:
• ET (t) 6 ET (min)+ ε. To obtainε strict zero would imply exhaustive training, which

requires an infinite number of training steps. A non-zeroε > 0 needs only a finite number
of training steps and can be illustrated.
• EG(t + 1) > EG(t). This is known as optimal early stopping, in which training is
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Figure 2. Performance ofEG(α) for early stopping and weight decay in both descriptions
(equilibrium and dynamical). For exhaustive training, corresponding to unstopped training,
t →∞, without weight decay,λ = 0, the results are in both approaches the same and shown as
a dotted line (exh.). Of the four possible optimal curves, for early stopping and weight decay in
both approaches, three are identical and shown as one full circle (opt.). In section 4 we saw that
early stopping and weight decay are equivalent in the equilibrium approach. With this result
coincides the exact optimal weight decay curve, which is given by the dynamical approach. The
exact solution for early stopping, given by the dynamical approach, cannot fully reach the other
results (broken curve). The simulations of early stopping are consistent with both descriptions,
see error-bars. Parameters are as in figure 1.

terminated when the generalization error starts to increase.
In figure 3, it can be seen that the first condition always leads to diverging training times

around the storage capacityαc = 1, resulting in overtraining. However, in early stopping
the number of training steps always remains quite small.

5.4. Asymptotics

Figure 3 implies that asymptotically, very few training steps are necessary to fulfil the
termination condition. This can be examined more precisely. Using the binomial series,
all time-dependent integralsI lm, see (17), can be expressed as sums of time-independent
integrals,

I lm(α, η, t) =
l∑
i=0

(
l

i

)
(−η)iI 0

m+i (α) for l = t, 2t. (25)

The time-independent integralsI 0
m depend only onα. Their leading order isO(αm), and

the full dependence onα can be seen in tables 2 and 3.
For small numbers of training steps (t = 1, 2, 3), we can derive analytical expressions

for the generalization error, if we use these expressions and choose the learning rate as
η(α) = η0α

−1. In the caset = 1, we obtain

EG(t = 1) = G−H 2

2
+ H

2

2
(η0− 1)2+ G

2
η2

0
1

α
(26)

which converges to the absolute minimumE∞ only if η0 = 1. The rate is slower than the
optimal batch rate, seeEG(α > 1) in table 2.
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Figure 3. Necessary training steps to fulfil certain stopping criteria. Training until a certain
accuracy is reached, i.e. untilEmin

T + ε, is shown forε = 0.001 (dotted curve) andε = 0.01
(broken curve). In early stopping, training is terminated, when the generalization error increases,
i.e.EG(t+1) > EG(t). The result is shown by the full curve. The marks are simulation results.
Parameters:G = 0.84, H = 0.78; η = α−1; and simulations with systems of sizeN = 200
averaged over 100 iterations.

Table 3. More values of time-independent integralsI0
m(α) for α > 1.

m I0
m(α)

2 α + α2

3 α + 3α2 + α3

4 α + 6α2 + 6α3 + α4

5 α + 10α2 + 20α3 + 10α4 + α5

6 α + 15α2 + 50α3 + 50α4 + 15α5 + α6

For t = 2 we obtain

EG(t = 2) = G−H 2

2
+ H

2

2
(η0− 1)4+ 1

α

[
G

2
η2

0(η0− 2)2+ H
2

2
η2

0(5η
2
0 − 8η0+ 2)

]
+O

(
1

α2

)
. (27)

Again, only in the case ofη0 = 1, the absolute minimum is reached, this time with the
same rate as the full batch result, i.e.

EG(t = 2) = G−H 2

2

(
1+ 1

α

)
+O

(
1

α2

)
. (28)

The reader may useI 0
5 andI 0

6 from table 3 to calculateEG(t = 3). The result will show the
same optimal convergence rate. A numerical test indicates that this rate is reached earlier.

These results are illustrated in figure 4. If terms of orderα−2 can be neglected, then
already two batch training steps are sufficient to reach the optimal convergence rate, if the
learning is chosen asη = α−1.
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Figure 4. Asymptotical performance of the rest-errorĒG = EG −E∞ for different numbers of
training steps. The exhaustive result (upper dotted curve) corresponds to an infinite number of
training steps (t →∞) and shows overtraining. Optimal early stopping uses per definition the
optimal number of training steps (t = topt) and defines the lower bound (lower dotted curve).
With only one batch training step, the same scaling as in the lower bound but with a different
prefactor can be reached (broken curve). Two steps already yield the correct prefactor (full
curve). Witht = 3, . . . ,8 the lower bound is reached earlier (t = 3, dotted curve). Parameters
are as in figure 3.

6. Summary and discussion

In this paper, early stopping and weight decay in a linear perceptron were studied. The
dynamical approach is directly related to the gradient descent update rule. Thus, the typical
behaviour was found not only for a final equilibrium state, but also for each training step
(see figure 1). Early stopping and weight decay can be studied in detail.

In [14], the same problem was addressed by an equilibrium approach. An approximative
solution to early stopping and weight decay was found by using finite temperature solutions
of the thermodynamic approach. A comparison of the two approaches (see figure 2) showed
that the equilibrium solution is a very useful approximation. It is exact for weight decay
and very good for early stopping. Which of the approaches is extendable from the linear
machine to more complicated systems is an interesting, still open problem.

Another interesting issue was raised by observing the training times. It turned out that
asymptotically, only a very small number of batch training steps is necessary to reach the
optimal batch convergence, if the learning rate is chosen asη = α−1 (see figures 3 and
4). This result should be seen in relation to recent results onon-line training [25–30].
It was shown that on-line training can yield the same convergence rate as optimal batch
training if many examples are available (α→∞) and the learning rate is annealed during
the training process asη = α−1. In on-line training the examples are presented only once
in a sequence and after each new example all the weights are updated. Therefore, on-line
training is obviously computationally much cheaper than batch training. However, if two
batch training steps are already sufficient in order to reach the optimal convergence rate,
then batch training is again competitive even with respect to computational costs. A better
understanding of the relation between batch training with few training steps and on-line
training with annealed learning rate would be desirable.
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Finally, it is worth mentioning that the performance plots (figures 2 and 4) show three
regimes that are characteristical for many learning tasks. From zero to the storage capacity
αc, the network is learning examples by heart or storing them, which leads to a rising
generalization error if the task is unrealizable. We call thisstorage regime. Aboveαc the
network is generalizing, and the generalization error decreases again. This is called the
generalization regime. We find it useful to introduce anasymptotical subregimestarting
from αasy. In the asymptotical regime, the relative number of examplesP/N is large,
which allows some simplifying assumptions. One consequence of the simpler behaviour in
the asymptotical regime is the similarity of the exhaustive and the optimal solution, which
makes early stopping and weight decay unnecessary. Asymptotical results can be found
in statistics and in statistical mechanics, see [31, 32] for example. It should be noted that
the behaviour in the generalization regime belowαasy is much richer. For the perceptron,
we know thatαc = 1 and αasy is of the order 10. Determiningαc and αasy for more
complicated networks is a necessary requirement, if one wants to understand their learning
abilities better.
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Appendix A. Average over the teacher weights

Here we add some identities which are necessary to calculate the averages over the input
distributions, see equations (13) and (14). Like in the equilibrium approach, it is based on
the assumption that the distribution of the local fieldsh is Gaussian. The local fieldsh
are essentially the inner product of weight vectorW and input vectorx. Therefore, the
assumption is fulfilled, if inputsxi are random variables with mean zero and variance one.
Alternatively we can keep the inputs fixed, and assume that the weightsWi are random
variables with mean zero and variance one.

The Gaussian local fieldsh∗µ have mean zero, i.e.〈h∗µ〉 = 0, and covariance

〈h∗µh∗ν〉h∗µ,h∗ν =
{
δµν for µ = ν
Cµν for µ 6= ν

}
= δµν + (Cµν − δµν). (A1)

The two terms denote diagonal and off-diagonal part, a writing that we will always use.
To find our first identity, we have to decorrelate the local fields into uncorrelated

Gaussians,̃hµ and h̃ν , first. Then we calculate diagonal and off-diagonal term, with the
assumption thatCµν is small forµ 6= ν. We find

〈z∗µz∗ν〉{xiµ} = 〈g∗
(√

1− (Cµν)2h̃∗µ + Cµνh̃∗ν
)
g∗(h̃ν)〉h̃∗µ,h̃∗ν

=
{
G for µ = ν
〈[g∗(h̃∗µ)+ g∗(h̃∗µ)′Cµνh̃∗ν ]g∗(h̃∗ν)〉h̃∗µ,h̃∗ν for µ 6= ν

= δµνG+ (Cµν − δµν)H 2. (A2)

In the same way, the following identity can be proved,

〈z∗µh∗ν〉{xiµ} =
〈
g∗
(√

1− (Cµν)2h̃∗µ + Cµνh̃∗ν
)
h̃∗ν

〉
h̃∗µ,h̃∗ν
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= δµνH + (Cµν − δµν)H = CµνH. (A3)

Appendix B. Dynamical approach with weight decay

Weight decay can be included in the training error by adding a term that penalises a large
norm of the weights, i.e.

ẼT := 1

P

[
1

2

P∑
µ=1

(z∗µ − zµ)2+
λ

2

N∑
i=1

(Wi)
2

]
(B1)

whereλ determines the relative strength of the weight decay term. Using this training error,
the gradient descent learning rule becomes,

Wi(t + 1) = (1− ηλ)Wi(t)+ η√
N

P∑
µ=1

[z∗µ − zµ(t)]xiµ. (B2)

Step 1.For P < N and the linear student,zµ = hµ = N−
1
2Wxµ, we can define again

σµ(t) as above (9). The recursion forσµ(t) follows from equation (B2) with theoverlap
matrix, C = N−1xµxν . From the geometrical series we know the solution of this recursion,

Wi(t) = η√
N

P∑
µ,ν=1

z∗µ

{
1I− [(1− ηλ)1I− ηC]t

1I− [(1− ηλ)1I− ηC]

}
µν

xνi . (B3)

The initial conditions are not influenced by weight decay and remainWi(0) = 0 and
Wi(1) = ηN− 1

2
∑P

µ=1 z
∗
µxiµ. However, the limit of infinitely many timesteps depends on

the weight decay. We obtain the pseudoinverse including weight decay, i.e.

Wi(t →∞) = 1√
N

P∑
µ,ν=1

z∗µ[(λ1I+ C)−1]µνxiν . (B4)

Note, that forλ > 0 this solution can be extended to the caseP > N . The introduction
of the matrixB is then not necessary. Only the general form of the density of the eigenvalues
has to be used (see references above). However, to be consistent with the solution without
weight decay,λ = 0, we also use the matrixB here, that is as long asP < N .

Step 2.As an example, we calculate the behaviour ofR̂(t) using expression (B3),

R̂(t) =
〈

1

N

P∑
µ,ν=1

[
1I− (1I− ηλ1I− ηC)t

λ1I+ C

]
µν

〈z∗µh∗ν〉{xiµ}
〉
{xiµ}

=
〈
αH

P

P∑
µ=1

[
1I− (1I− ηλ1I− ηC)t

λ1I+ C
C
]
µµ

〉
{xiµ}

. (B5)

The average is again expression (A3) from appendix A. With similar minor changes we
receiveQ̂(t) and the training errorET (t). The overdetermined case, i.e.P > N , can be
determined in full analogy.

Step 3.Again we have integrals over the eigenvalues ofC respectivelyB, which are now
of the form,

Ilmn(α, λ, η, t) :=
〈

1

P

P∑
µ=1

{
[1I − (1I− ηλ1I− ηC)t ]l

[λ1I+ C]m
[C]n

}
µµ

〉
{xiµ}

=
∫ ξmax

ξmin

dξ ρ(ξ)
[1− (1− ηλ− ηξ)t ]l

[λ+ ξ ]m
ξn (B6)
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with l, m, n ∈ {1, 2, 3}. These can be calculated using the same density of eigenvaluesρ(ξ)

as without weight decay. (18). The maximal learning rate is now twice the inverse of the
sum of the weight decay strengthλ and the maximal eigenvalueξmax of C or B.

Without weight decayλ = 0, the integralsIlmn(α, λ, η, t) can be expressed in terms
of integralsI lm(α, η, t) from above (17), using the two relations,I1mn = I 0

n−m − I tn−m and
I2mn = I 0

n−m − 2I tn−m + I 2t
n−m.

B.1. Result

The results can be written in a compact form, if we introduce a constantc, which is c = 1
in the case ofα < 1, andc = α in the case ofα > 1,

EG(α, λ, η, t) = G

2a
(c + αI221)− H

2α

2c
(2I111+ I221− I222)

ET (α, λ, η, t) = G

2c
(c − 2I111+ I222)+ H

2

2c
(2I111− 2I112− I222+ I223).

(B7)
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